Narcissus's blog Stay Follish, Stay Hungry

论文阅读:PPR-FCN

2018-07-02
Narcissus

1.主要思想

  • weakly supervised visual relation detection (WSVRD)这里无监督指的是两个方面,一个方面是弱监督的物体检测,在训练过程中,没有bounding box作为标签来监督训练,其实我认为这里的物体检测是无监督的,不太懂这里为啥说是弱监督的。(解释,通过阅读WSDDN这篇文章,我理解了其中的弱监督的观念:就是说虽然没有bounding box,但是通过预训练的cnn+region proposal mechanism+spp能得到一个大致的物体区域,利用image-level的标注信息进行训练,就相当于给了弱监督的信息)

At training time, we discarded the object bounding boxes to conform with the weakly supervised setting ,应该是WSOD和WSPP两个过程都没有用bounding box的标签。

  • 那为什么又说是image-level的分类或者标注呢?因为标注只给了很少的信息,如果一个物体出现在一张图片中,那么图像的标注就是positive,否则为negtive。而分类是要在这种image-level的标注下找到一个物体对应的region proposal。

  • 网络分成了两个部分,两个都是弱监督的方法,一个进行物体检测,另一个进行关系分类。

WSOD  Module  Input Image  s  Subject  FCN  Subject  FCN  NMS  Pos.-Role  Sensitive  Score Map  Pos.-Role  Sensitive  Score Map  s  Cls.  Object  FCN  Object  FCN  Rois Rolo  Pairwise  ROI Pooling  Pair-wise  Rol Pooling  Output  I Sperson  Shold O 0.8  s  umbrella  Shat  son = 0.6  WSPP Module  Figure 2. The overview Of the proposed PPR-FCN architecture for WSVRD. It has two modules: WSOD for Object detection (C:\Users\nian\OneDrive\NoteBook\narcissuscyn.github.io_posts\assets\clip_image001-1547018446020.png)  and WSPP for predicate prediction (Section 3.2), each module is composed by a pair selection branch and a classification branch.

2.WSVRD的三个难点

  • 1)缺乏空间位置的限制,比如人戴帽子,帽子可能在别人头上;
  • 2)相对于WSOD更容易陷入次优解[21];
  • 3)WSVRD如果采用全连接网络,会有很大的计算量。

3.WSOD模块采用的是WSDDN[3]

参考另一篇WSDDN的文章:

4.WSPP模块采用了两个子网络

一个用来选取关系对,另一个用来进行关系分类:

(C:\Users\nian\OneDrive\NoteBook\narcissuscyn.github.io_posts\assets\clip_image002-1547018446020.png)  '(0 "d)sßs • (0 'id)ßs = (0 'Id)US

cation) branch. ss' I is softmax normalized over all pos-  Sible region pairs with respect to a predicate class, i.e.,  (C:\Users\nian\OneDrive\NoteBook\narcissuscyn.github.io_posts\assets\clip_image003-1547018446020.png)) 4— Pj); while S,.cls is soft-  normalized over possible predicate classes for a re-  gion pair, i.e., P)) 4— softmaxrSrClS(Pi, Note  that such normalizations assign different objectives to two  branches and hence they are unlikely to learn redundant  models [3]. Essentially, the normalized selection score can  be considered as a soft-attention mechanism used in weakly  supervised vision tasks [35, 5] to determine the likely Rols.

在进行softmax之前,如何计算这两个分数:

  • 重要 Position-sequence-Sensitive Score Map

主要考虑到两方面的因素:position和pair对的顺序问题:

kxkxR  t:) Vote  POO  Vote  .•'0bj. Rol  Joint P ooling  Figure 3. Illustrations of pairwise Rol pooling with k2(k —  spatial grids and R predicates. Left: subject/object pooling for a  single Rol. Right: joint pooling. For each score map, we use k2  colors to represent different position channels. Each color channel  has R predicate channels. For the joint pooling, uncolored pooling  results indicate zero and the back-propagation is disabled through  these grids. Note that the score maps in subject/object pooling and  joint pooling are different, i.e., there are 2 • 2 • k2R conv-filters.

  • Pairwise roi pooling(为了实现以上思想,设计了以下pooling方案:)

(O '(Cd + + = (C:\Users\nian\OneDrive\NoteBook\narcissuscyn.github.io_posts\assets\clip_image006-1547018446020.png)Js

  • 1)subject、object pooling:主要判断两个物体哪个是subject,哪个是object,以subject的分数计算为例,文章说这种设计是position-sensitive的,我不是很懂:

(C:\Users\nian\OneDrive\NoteBook\narcissuscyn.github.io_posts\assets\clip_image007-1547018446020.png) = vote  pool  (3)  where k = 3, pool(•) is mean pooling, and vote(•) is aver-  age voting (e.g., average pooling for the scores of the grids).  ss ub (P) is position-sensitive because Eq. (3) aggregates re-  sponses for a spatial grid of Rol subject to the correspond-  ing one from the k2 maps (e.g., in Figure 3 left, the dark  red value pooled from the top-left grid of the Rol) and then  votes for all the spatial grids. Therefore, the training will  shepherd the k2 R subject filters to capture subject position  in an Image.

  • 2)joint pooling 为了捕捉subject和object的相对位置关系,与1)不同的是grids是建立在joint region的

sjoint(C:\Users\nian\OneDrive\NoteBook\narcissuscyn.github.io_posts\assets\clip_image008-1547018446020.png) = vote  pool xs  (xo  pool  (4)  where g(i' , j') n Pi denotes the intersected pixels between  g(i', j') and P', in particular, if g(i', j' F) Pi = d), pool(•) is  zero and the gradient is not back-propagated. We set k = 3,  pool(.) to average pooling, and vote(.) to average voting.  For example, for relation person-ride-bike, the pool-  ing result of person Rol is usually zero at the lower grids  of the joint ROIS while that of bike Rol is usually zero at  the upper grids.

5.损失函数

Follow[34],Multi-task loss:

reg  mg  tm g  (C:\Users\nian\OneDrive\NoteBook\narcissuscyn.github.io_posts\assets\clip_image009-1547018446020.png)  where a is empirically set to 0.2. We train the PPR-FCN  model by SGI) with momentum [19].

  • 1)WSOD loss:(这个loss是图像级的类别分数)

= -E logsc + log(C:\Users\nian\OneDrive\NoteBook\narcissuscyn.github.io_posts\assets\clip_image010-1547018446020.png)) , (5)

根据[10]又考虑了位置上的关系(上面这个loss不能保证空间位置上的平滑性):

detection [10], we regularize the smoothness as: 1) for each  foreground class c G {1, ..., C}, the top high-scored regions  (C:\Users\nian\OneDrive\NoteBook\narcissuscyn.github.io_posts\assets\clip_image011-1547018446021.png) and their neighborhood with IOU 0.5 should  both have high scores; we consider them as the pseudo pos-  itive regions; and 2) the neighborhood of the pseudo posi-  tive regions with 0.1 IOU 0.5 should be pseudo back-  ground regions (c = O). In this way, our spatial smoothness  regularization loss is:  ceC ieCc  iet3  where Cc is the set of pseudo positive regions for class  c # O, and B is the set of pseudo background regions. We  follow a similar sampling strategy as in [34]: 256 regions  are sampled, where at least 75% are the pseudo background  regions.

  • 2)WSPP loss:

WSPP Loss. Suppose R is the set of the image-level  relation groundtruth triplets, specifically, (C:\Users\nian\OneDrive\NoteBook\narcissuscyn.github.io_posts\assets\clip_image012-1547018446021.png) e R,  where s, o G {1, ...,C} are the labels of the subject  and object. Suppose Cs and Co are the region sets of  subject s and object o, respectively. Denote Sr =  S (P' P') as the image-level predicate score,  i€Cs r t•, J  the image-level predicate prediction loss is defined as:  cered = _E(I  log Sr +  (7)

6.实验

  • 1)物体检测结果,提升主要来自于全卷积网络,而且WSOD往往能发现discriminative parts of objects

  • 2)谓词检测结果,结果说明考虑position和sequence的网络要更优,用全连接层的要优于pooling-based methods,本文用这类方法是为了减少计算量

Table 2. Predicate prediction Irrformances of various  methods on VRD and VG. The llst two rows are fc-based methods.  Pos*Pairw ise  Pos•JointBox  Pos Seq +Pairw ise+fc  VTransE  R@50  24.30  29.57  2, 74  47.43  44.76  R@IOO  24.30  29.57  47.43  44_76  R@SO  43_30  45_69  61.5  64.17  62.63  4361  45.78  64M,  6287

  • 3)phrase和关系检测结果

Supervised-PPR-FCN优于VtransE,因为其pair-wise roi pooling,有用的spatial context 速度相对于VtransE更快,参数更少

7.实现

数据:

VG is annotated by crowd workers and thus the relations labeling are noisy, e.g., free-language and typos. Therefore, we used the20pruned version provided by Zhang et al. [48].


上一篇 15.3sum

Comments

Content